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Abstract: Analytic expressions for orbital electronic energies and charge distributions for the first-row atom 
dihydrides are developed within the framework of two important variations of extended-Huckel theory. The 
major purpose of the development is to ascertain in detail the individual effects operative within the different molecu
lar symmetries and how these vary with symmetric changes in geometry. Fairly simple expressions are derived for 
angular changes both within the original and the kinetic-energy-included methods, and the balancing of energy ef
fects between the ai and b2 symmetry orbitals appear therefrom to be capable in some cases of qualitatively repro
ducing the correct equilibrium molecular configurations. Correspondences with the Walsh rules are explored. 
Reasons for agreement with these rules and with empirical structures when found are discussed; why the agree
ment can be no more than qualitative is also considered. The more complicated expressions for symmetric bond 
stretching and contraction in these molecules are similarly derived and examined, and some reasons for the general 
failure of the methods to represent these deformations are detailed. 

Optimistic appraisals of the ability of semiempirical 
molecular orbital theories which explicitly include 

all (or all valence-shell) electrons to approximate details 
of equilibrium molecular geometry have been voiced 
for some time. The apparent success of such theories 
with molecular shapes, which are mainly angle de
pendent, may be contrasted with the results they 
produce regarding molecular sizes. The latter, 
which are functions principally of equilibrium bond 
lengths between bound, nearest neighbor atoms, are 
at best poorly approximated, or, more generally, appear 
to be beyond the capacity of these methods. 

Several questions arise upon consideration of this 
apparent dichotomy. The first relates to whether the 
approximate MO representations of angular and stretch
ing displacements from equilibrium are generally of 
such disparate quality as experience to date implies. 
If so, what features of the theories in detail are respon
sible for the difference and how do these features com
pare with those of more exact theories? Another ques
tion of interest concerns the degree of correspondence 

(1) Research performed under the auspices of the U. S. Atomic 
Energy Commission. 

between the approximate MO representation for angular 
displacements and Walsh's rules.2 These rules which 
are qualitatively based upon considerations of hybrid
ization changes and relative amounts of bonding and 
antibonding character between atom pairs in orbitals of 
different symmetry provide a useful interface for the 
connection of the MO results with the behavior of real 
molecules. 

To take advantage of the rules and the considerable 
amount of information otherwise available,3 the tri-
atomic MH2 systems have been the principal subjects 
of this study. With "central atom" M restricted to the 
first-row elements Be to O, the dihydrides, all with closed-
shell configurations, have been examined within the 
framework of the extended-Huckel (EH),4 kinetic-
energy included extended-Huckel (KEH),5 and, in an 
accompanying paper, the explicit electron repulsion 
SCF CND02 methods.6 Analytic expressions, or 

(2) A. D. Walsh, / . Chem. Soc, 2260 (1953). 
(3) L. C. Allen and J. D. Russell, / . Chem. Phys., 46, 1029 (1967); 

S. D. Peyerimhoff, R. J. Buenker, and L. C. Allen, ibid., 45, 734 (1966). 
(4) R. Hoffmann, ibid., 39, 1397 (1963), and later papers. 
(5) M. D. Newton, F. P. Boer, and W. N. Lipscomb, J. Am. Chem. 

Soc., 88, 2353 (1966), and succeeding papers in the same volume. 
(6) J. A. Pople and G. A. Segal, / . Chem. Phys., 44, 3289 (1966). 
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good approximations to such expressions, are derived 
for the energies and charge distributions pertinent to 
these methods in order that the particular contributions 
of the various interactions and within the different MO 
symmetries may be examined term by term. A clearer 
picture emerges for the effects which must balance to 
yield an energy-optimized structure. Conversely, where 
effects which should balance at the correct equilibrium 
configuration, but do not, are encountered, the failure 
may be more clearly localized from the analytical than 
from purely numerical results. 

Theory, Parametrization, and Symmetry Considerations 

The general secular determinental equation ap
propriate to all methods considered 

\F - Se) = 0 (1) 

may be conveniently factored for MH2 in either the 
linear Dail or bent C2v form via symmetry orbital repre
sentations. Considering all electrons, the totally 
symmetric orbital set 

^ i + = C+»,ls<PlsM + C+j,2s<p2sM + 

C+,-,2Pl<p2p,M + C+J1H-(<PHl + <PH2> (2) 

pertains for the molecule oriented in the XZ plane with 
the HMH angle ( = 26) bisected by the X axis and cor
responds to the e (inner shell), lai, 2ai, and 3ax orbital 
set arranged in order of increasing energy. In the 
EH method of Hoffmann and in the CNDO method, 
only the valence electrons are considered; hence, 
C+,,ls is zero and the e orbital is ignored. 

Asymmetric orbital sets recognizing the XY and 
XZ planes of symmetry are, respectively 

^i- = C 1 - ^p, <p2P,.M + C _ , ,H- (^Hi — <Pm) (3) 

which correspond to the Ib2 and 2b2 orbitals, and 

^V = <P2pBM ( 4 ) 

which is the lbi orbital in conventional notation. In 
linear (Dah) molecules the lbi and 2ai MO's become 
degenerate, both with classification iru. 

The factorization accomplished by use of the sym
metry orbital representations leaves at worst one-fourth 
order (square) matrix (in the KEH method), otherwise 
one 3 X 3 , plus one second- and one first-order matrix 
to be solved, and, in the case of the CNDO calculations, 
a series of such matrix equations interconnected by the 
SCF relations. The fourth-order matrices may be 
reduced in good approximation, as shown in the Ap
pendix, to matrices of third order similar to those en
countered in the EH method. The latter, or more 
precisely, their characteristic equations, are in turn 
approximated by conveniently soluble quadratic equa
tions which directly yield analytical expressions for the 
orbital energies. 

Depending upon the relative sizes of the diagonal 
elements in the third-order matrices, one of two methods 
of reduction to the quadratic form is used. Because 
of the neglect of differential overlap in the CNDO 
method, generally one technique for reduction is found 
to yield the best approximation, where, for the same 
molecule in the EH and KEH approximation, the other 
technique is to be preferred. The lower order matrices, 
of course, present no problems in derivation of the 
analytical expressions for orbital energies.7 

Energies and Changes upon Angular Displacement 

The EH Approximation. The total energy is gener
ally taken in the EH approximation as the sum over 
orbital energies weighted by the orbital occupation. 
For the systems MH2 with eight or ten electrons in total 
(six or eight valence electrons), this energy is in the 
notation used and transformations developed in the 
Appendix 

OCC 

Etot = 2 j > i = 2{(A + D + R - X3Z1) + 
i 

(R + D - X202) + D) (5) 

Equivalence of the diagonal elements (VSIP's) for all 
the 2pM orbitals is recognized. The X's are the energies 
of the MO's specified by subscripts. The parenthesized 
terms are in order for the ai and b2 symmetry orbital 
blocks; the final term (D) of eq 5 applies in the ten-
electron case (bi). For six total (four valence) electron 
cases such as BeH2 and BH2

+ 

Etot = 2 JXu1 + Xib2} (6) 

From the relations in the Appendix it is apparent that 

Etot (8 electrons) = 2{A + 2D + 5 + 8) 
(7) 

(10 electrons) = 2{A + 3D + 5 + S) 

and the energy variation with angle is to the first order 
in the expansions developed, eq AlO and A15.15 

(7) The energy results for the CNDO calculations may be coupled 
with compact analytic relations developed some time ago for 7r-electron 
calculations8 to yield the charge-density and bond-order expressions 
necessary for the SCF procedure. The matrix reduction method gen
erally required by the CNDO method is presented in the Appendix of 
this paper for the purpose of continuity of mathematical analysis, and 
because it is, in some cases, required for the EH and KEH calculations. 
The charge-density and bond-order relations are detailed, in their proper 
place, in the accompanying paper. 

As implied in the foregoing, the three theoretical methods are ex
amined in their originally proposed forms. Modifications of minor 
nature which have been made for various purposes are often amenable to 
the present analysis without substantial change. For example, the 
geometric mean approximation for off-diagonal matrix element com
putation in the EH method,9 employed mainly in fitting spectral transi
tions,10 could easily be incorporated. Changes to square-power 
dependence on overlap (of the off-diagonal elements in the EH and 
KEH methods11) are likewise tractable, requiring however, somewhat 
greater analytical modifications. Variations which prescribe parame
ter—as opposed to form—modifications under various conditions may 
be treated to the extent of how explicit the prescriptions are for the 
conditions encountered. Two types of such modifications are usefully 
recognized. The first, where structural changes are prejudged and 
parameters are in consequence initially modified,12 require no changes 
in the present analysis. When, on the other hand, the matrix elements 
are adjusted in the EH or KEH methods on the basis of charge densities 
or some other property of the solved secular equations, and then iterated 
to self-consistency,13' u a procedure of the type employed in the CNDO 
calculations becomes necessary. Further comment on the utility of 
such variations in treatment of the equilibrium angle and bond length 
problem follows below; a detailed analysis is presented in the ac
companying paper. 

(8) C. A. Coulson and H. C. Longuet-Higgins, Proc. Roy. SoC. 
(London), A191, 39 (1947). 

(9) R. S. Mulliken, / . Chim. Phys., 46, 497, 675 (1949); / . Phys. 
Chem., 56, 295 (1952); L. L. Lohr and W. N. Lipscomb, / . Chem. Phys., 
38, 1607 (1963). 

(10) C. J. Ballhausen and H. B. Gray, Inorg. Chem., 1, Ul (1962). 
(U) (a) D. G. Carroll and S. P. McGlynn, / . Chem. Phys., 45, 3827 

(1966); (b) L. C. Cusachs, ibid., 43, Sl57 (1965). 
(12) K. Wiberg, J. Am. Chem. Soc, 90, 59 (1968). 
(13) H. Basch, A. Viste, and H. B. Gray, Theor. Chim Acta, 3, 

458 (1965). 
(14) D. G. Carroll, A. J. Armstrong, and S. P. McGlynn, J. Chem. 

Phys., 44, 1865 (1966). 
(15) The A14 expansion truncated after the first term is employed 

even in cases where 2,Q ~ dj because of the similarity in form to the 
generally appropriate eq AlO expansion, and, further, of its similar or 
in some cases even better representation of d'dS than the multiterm 
(3 or 4) expansion required under A15. 
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d£ t ( 

bB 
= 2-

a(5j-_5_) 
b0 - { 

2(f2 + <22) 
+ I}'- (8) 

At this point it becomes apparent how balancing 
between the energy changes in the ai and b2 symmetry 
orbitals upon angular displacement can lead to a min
imum energy configuration at some nonextremum 
internal angle, 26. Q and (a + d) for the ai orbitals, 
the latter through R, are strongly dependent upon cos 6, 
and Q and d ( through R) for the b2 orbitals are simi
larly dependent upon sin 6. Both orbital energy terms 
are also dependent upon SHI,H2 , which is a more com
plicated function of 6. These dependencies become 
more evident from the rearranged relationship which 
may be obtained for the 5 expansions by taking ad
vantage of the constancy which exists for the sums of 
various barred and unbarred quantities, i.e., sums of 
second-order terms in E and F and of first-order terms 
in G and T. 

(5 + 8) = Ms + vx 

Tl ±±J? ) - G + x+ki 
+ 

Mp - VX 

-(TD - G + x + h) 
(9) 

Here 

Mj — 2 5 j M > 1 . 

K, 

2"(«JM + <*H) - Q!jM j = 2s or 2p<r 

v = <-(a2p«r.M + aH)21 [K(a2pni + « H ) — ocipc , } -
"2PTM (10) 

ki = 2S22sM,isH[-K(a:9SM + « H ] - <*2sM] 

Ar2 = 2{aH — a2p«r.M + a2pc,MS2
2sMiSH — 

Shv<™,isn[K(a2v<™ + « H ) — 2ajp,M]} 

All parameters in eq 10 are independent of 8, and 

X = 2S2
2p<,.,I;1SH[A:(c^p™ + « H ) - a2p(r.M] cos2 6 (11) 

The K which appears above is the proportionality 
constant relating the off-diagonal to the diagonal 
matrix elements. G and T contain the explicit SHI,H2 

terms. 
It may be verified that for normal bond lengths and 

parametrization (VSIP's), the Mj values will generally be 
large positive quantities, while v will be much smaller 
and negative (p.Jv -~ —10). Also, where k\ will be 
large and negative, Zc2 will be much smaller, since in the 
latter strong internal cancellation within both the first 
and second pairs of terms as presented in eq 10 and, 
further, cancellation between pairs occurs. The strength 
of the cancellation depends of course upon how close 
in magnitude a H and a2p<r are, but for the cases under 
consideration it should always be appreciable. Typical 
values for these parameters are shown in Table I. 

By the same token, there will be cancellation between 
G and x as they appear in the denominators of bo th 
terms in eq 9, with G the greater in magnitude for 
comparable a values. Therefore, since T is in the range 
0.5-0.75 for normal M H bond lengths and is slowly 
varying with 8 (due to opposite effects on H and F), 
the numerators of both terms in eq 9 should be positive 
and the denominators negative at all meaningful values 

Table I. Parameters for the Analytic Energy Relations for 
CH2 and H2O (1Ai States) 

CH2 H2O 

rsiH, A° 
aji2s.2P. eVb 

MS,P, eV 
v, eV 
x/cos2 0, eV 
fci,2, eV 

1.094 
-21.4, -11 .4 

45.44, 52.11 
-3 .39 

-15.36 
-21.26, -0 .54 

0.960 
-32 .3 , -14 .8 

28.51,29.71 
-2 .89 

-10.27 
-22.15, 1.49 

<* Bond lengths from experimental sources, tabulated in ref 6. 
b as = —13.6 eV, all values from ref 17. The orbital exponent 
for hydrogen is here and elsewhere in this paper taken as 1.2, 
a better SCF value than unity, and to facilitate comparisons with 
the KEH and CNDO results. All other exponents are the Slater 
values. 

of 0: for 6 ^ 45°, \h + T(A + D) /2 | > ( - G + x) > 
ITD + ki j . Since x is negative, the numerator of the 
first term decreases with increase in 9; that of the second 
term increases. Depending upon the relative rates of 
change of G, T, and x> the denominators can either 
decrease or increase. It should be noted that both G 
and x decrease in magnitude and T slowly increases 
with increasing 6. 

The numerators of eq 9 are seen therefore to correctly 
represent the behavior of the orbital energies for the ai 
(in total) and b2 orbitals upon angular displacement 
vis-U-vis the Walsh rules and general qualitatively 
based M O expectations. Considered by themselves 
they are, however, incapable of providing the detail 
which must exist as regards curvature to produce a 
preferred configuration; the numerator of the first 
term decreases as rapidly as that of the second increases 
with increasing 6. On the other hand, it is certain that 
while the denominators which contain explicit de
pendence upon both cos Q and 5 H H must be the means 
by which the over-all rates of change of energy are 
determined, their changes must be smaller than (if in 
the same direction as) those of the numerators so as 
not to interfere with the correct directional dependence 
upon angle already noted. That the theory fulfills 
this latter expectation is verified by recognition of the 
— G + X cancellation noted above. Whether reason
able curvatures are obtained requires examination of 
specific cases. 

For CH2 (six valence electrons, rCK = 1.094 A). 
— G + x is found to monotonically increase over the 
entire interesting range of increasing 6, sufficiently 
slowly so as not to interfere with the directions of 
change dictated by the numerators, but exercising 
enough influence to bring the rates of change of the 
two terms to equality in magnitude (opposite in direc
tion) at 6 = 60 ± 2° where 5 + 5 has its largest negative 
value. This result agrees excellently with both the 
exact EH result and observed angle for the 1Ax state 
of CH2. At small 6, the second term binding increases 
more rapidly than that of the first decreases, consistent 
with a smaller and hence more rapidly changing nu
merator in term two than in term one; see Tables I and 
II. At larger 8, the numerators rapidly become more 
nearly equal whereupon the denominators can effect 
the change, making term two increase in binding energy 
more slowly than term one decreases, and constituting 
at the crossover the energy minimum. 

Interestingly, if the assumption is made that G, 
which is entirely angle dependent through S H H> and 

Ehrenson / Analytic Procedures for Extended Htickel Methods 
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Table II. Angular Dependence of Total Energy for CH2 
from Analytic Eq 9° 

deg - x SHH 
-G + 

X -a -S 
-(S + 

S) 

45 7.68 0.258 0.486 12.05 4.158 4.360 8.518 
50 6.35 0.215 0.484 12.37 3.974 4.847 8.821 
54.3 5.23 0.186 0.490 12.79 3.823 5.158 8.981 
60 3.84 0.156 0.503 13.47 3.639 5.456 9.095 
65 2.74 0.138 0.518 14.13 3.499 5.571 9.070 
70 1.80 0.122 0.532 14.70 3.367 5.684 9.051 

•6 in degrees; S and T unitless; all other quantities in eV. 

that part of T which is similarly dependent do not 
change with angle, which is a pertinent dissection with 
respect to Walsh's rules, especially for the single b2 

orbital, the rates of change of both 5 and <5 are sub
stantially decreased. In fact, adopting the value for 
S H H a t 20 = 90°, the energy-zw.-angle curve is so severely 
flattened that five significant figure results obtained in 
the expansions (which are not this good as approxima
tions) cannot provide a trustworthy estimate for the 
minimum. 

For H2O (eight valence electrons, two in the symmetry 
localized bi orbital, /-0H = 0.960 A), — G + x n r s t 
decreases with increasing 6 up to ~ 5 5 ° , then increases 
very slowly, again, as in CH2 , not affecting the directions 
of energy change dictated by the numerators; see Table 
III. In H2O, however, the rate of increase in term 

Table III. Angular Dependence of Total Energy for H2O from 
Analytic Eq 9° 

e 
45 
50 
54,3 
60 
65 
70 
80 
90 

-G + 
X 

16.39 
16.17 
16.14 
16.25 
16.43 
16.64 
17.02 
17.17 

- 5 

1.900 
1.809 
1.731 
1.632 
1.552 
1.482 
1.381 
1.345 

-6b 

2.077, 1.832 
2.407, 2.082 
2.655, 2.269 
2.930, 2.477 
3.122, 2.625 
3.269, 2.742 
3.453, 2.893 
3.512, 2.942 

-(S + sy 
3.977, 3.732, 3.977 
4.215, 3.891, 4.084 
4.386, 4.000, 4.153 
4.562, 4.109, 4.216 
4.674, 4.177, 4.250 
4.751, 4.224, 4.270 
4.834, 4.274, 4.285 
4.856, 4.287, 4.287 

" 6 in degrees; all other quantities in eV. b The first entry from 
one-term expansion A14 which yield coefficients in Table I. The 
second entry by exact solution of quadratic for Ib2 orbital. c The 
first two entries correspond to sums with the two values given in 
the —I columns; the third is obtained from the expansions assum
ing the value of SHH at 45° (0.3331) does not change with B. 

two (b2 symmetry) continues greater than the rate of 
decrease in term one (ai symmetry) throughout the 
entire range of increasing 6, prompting the obviously 
wrong prediction of linearity for this molecule at this 
value of T-OH- Again, as in the CH2 case, the variation 
in S1HHJ a s it contributes to G and T, is found to reinforce 
the changes as dictated by x» in agreement with the 
Walsh analysis, at least as far as the separated b2 orbital 
is concerned. This is illustrated in the last column of 
Table III.16 

(16) The relatively successful prediction of the equilibrium angle in 
CH2 has been previously noted;17 the correct 20 value for singlet 
methylene is 103.2°.18 The failure of H2O has similarly been noted. 
The exact numerical EH results indicate a shallow minimum at ~85° . 
Claims for improvement by choosing a smaller value of K,3 by contrac
tion of the OH distance,1113 and through recognition of the appreciable 
ionic character of the molecule14 have been made. The mechanism for 
improvement under decrease in K may be localized in eq 9. While the 
largest effect appears to be on ^3 (reducing this value to 2.1 with K = 

In both the CH2 and H2O (1Ai states), and presumably 
as well BH2

-, NH2
+, and NH2

- , the lowest two (most 
bonding) ai and the bonding b2 orbitals are filled, and 
the opposed behavior of the symmetry orbitals upon 
angular change of approximately equal size, with re
spect to energy, can produce nonextremum values for 
equilibrium configurations. The analytical details are 
in agreement with the qualitative precepts of Walsh 
and indicate, at least for the b2 orbital which is isolated 
in the analysis, the mathematical mechanism within 
the EH framework by which the increase in binding 
of the 2pM to 1 SHI-1 SH2 is coupled to and reinforced 
by the decrease in antibonding between the lsH 's, 
with increase in 6, to produce the over-all increase in 
bonding in this MO. For the six total (four valence) 
electron cases such as BeH2 and BH2

+, however, only 
one (the most bonding) ai and one b2 orbital are filled. 
The effects on both the individual orbitals are easily 
obtainable; by difference the general nonparameter 
determined behavior of the second ai orbital filled in 
CH2, etc., may be inferred. 

Straight off, it appears that the energy of the low-
lying ai level within the EH approximation will increase 
(become less binding) with increasing angle for any 
reasonable choice of VSIPV' and equilibrium bond 
lengths for BeH2 and BH2

+, and for CH2 as well, albeit 
weakly contrary to the expectation of Walsh. This 
may be attributed to the decrease in H-H binding 
(ISHI + ISHO being numerically more important than 
the concomitant increase in (2s + 2p)M, lsH binding, 
due not to increased s character of the participating 
hybrid on M, as claimed by Walsh, but rather to in
creased participation by hydrogen in the function. This 
arises because it is through a decrease in px rather than 
an increase in 2s that the s character of the hybrid is 
increased, an observation in agreement with Mulliken22 

1.5), term one is little affected because of a simultaneous decrease in the 
magnitude of k\, which in fact causes a decrease in the rate of fall of 
term one with increasing angle. Interestingly, —G + x changes little. 
In term two, the decrease in ii appears much less dramatic (fip to 12.4 
with K= 1.5); this is, however, not matched by change in fa and, 
consequently, the rate of change of the whole term is decreased sub
stantially, to the point where a minimum in S + 5 is found at 75-80 ° (0). 
A further and not necessarily great reduction of K might be expected to 
yield a value close to the observed value for 20 (104.4°). 

Effects of reduction of roH may be submitted to similar analysis. 
Neither this change nor the entirely empirical reduction of K may be 
justified within the framework of the EH method, however, as being 
anymore than attempts to reproduce the correct angular dependence 
particularly for H2O. Despite analysis which has shown that a single 
value of K cannot be expected to hold generally,5'19 no recipe for varia
tion of this parameter with constitutional changes is in evidence. 

Recognition of charge distribution differences and amendment of the 
VSIP's based on these distributions, on the other hand, would be 
entirely compatible with the theory. Weighted averages of the ap
propriate hybrid and formal ion bounds established for the constituent 
atoms should allow a more satisfactory representation of the diagonal 
matrix elements for a molecule whose charges and overlap populations 
do not appear from the original EH parametrization procedure to be 
balanced. Such procedures, which are properly recognized as out
growths and extensions of the « technique of 7r-electron theory,20 lead 
to imposition of cyclical, self-consistent, a-upon-charge distribution 
adjustments. These procedures are similar in mathematical structure 
if not entirely in philosophy and content with those imposed in the SCF 
part of the CNDO calculations, and will therefore be examined in 
detail along with the analytic CNDO results. 

(17) R. Hoffmann, G. D. Zeiss, and G. W. Van Dine, / . Am. Chem. 
Soc, 90, 1485 (1968). 

(18) G. Herzberg, Proc. Roy. Soc. (London), A262, 291 (1961). 
(19) Cf, G. Blyholder and C. A. Coulson, Theoret. Chim. Acta, 10, 

316 (1968). 
(20) G. W. Wheland and D. E. Mann, / . Chem. Phys., 17, 264 (1949). 
(21) G. Pilcher and H. A. Skinner, / . Inorg. Nucl. Chem., 24, 937 

(1962). 
(22) R. S. Mulliken, J. Am. Chem. Soc, 11, 887 (1955). 
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who noted that substantial s character would be ex
pected even at 0 = 45° in hybrids of first-row atoms. 
In H2O, the change in energy of the ai level is in agree
ment with the Walsh rules, here presumably because 
the second, the OH binding effect, is larger than the 
first, the HH binding effect. However, more complete 
calculations suggest the angular effect is in the other 
direction.3,23'24 

Equation 6 cast in terms of the expansion (eq A9, 
A13, and A15) is useful in revealing the origin of some 
of these variations in the four valence-electron cases. 

£ t o t = 2[Xu1 + Xib,} = 2{(m - >•_) + D + S)) (12) 

The parameter m, effectively a weighted average of the 
2s and 2p VSIP's which is independent of S H H contribu
tions, decreases in magnitude substantially with in
creased d.25 This decrease in binding is, however, 
almost completely offset by an increase in y- (positive 
and becoming more positive) to yield a slow decrease 
in binding for the Ia1 level. The variation in y- itself 
is the result of a partial cancellation of a large increase 
promoted through MH binding by the 5HH-dependent 
effects, which decrease with increasing 6. Table IV 

Table IV. Components for Orbital Energies for BeH2" 

8 = 65° B = 75° 

m - 6 . 6 2 , - 6 . 4 4 6 - 6 . 1 6 , - 6 . 0 8 b 

y- 9.04 9.41 
Xi^ —15.66, —15.83b - 1 5 . 5 7 , -15 .77 & 

O - V 9.04 9.68 
(*».)6oc - 1 5 . 6 6 - 1 5 . 8 4 
Xlhl - 1 3 . 6 4 , - 1 3 . 6 4 b —13.78, —13.81b 

TBeH = 1.343 A; a2s = - 9 . 8 , a2p = - 5 . 8 , all energies in eV. 
b Values obtained by exact numerical solution. c Values obtained 
by holding SH H at its 65= value (0.0668). 

illustrates these effects for the arbitrarily chosen angle 
values of 65 and 75 ° for BeH2. 

Over-all, the binding energy of the Ib2 level in
creases considerably more rapidly over the entire range 
of IB from 90 to 180° than the energy of the lai level 
decreases, and consequently, BeH2 is predicted to be 
linear. The same result is obtained for BH2

+. On the 
other hand, the corresponding beryllium and boron 
dihydride molecules with added electrons which will go 
into the 2ai level are expected to be bent. 

Useful comparisons with the results of more exact 
calculations and with some numerical EH results on 
these and other first-row dihydrides may be made.3'24 

All composite predictions are found to be in agreement 
with Walsh as well as with these authors. Particular 
details are not universally in agreement, interpretation 
of what the Walsh rules should correspond to theoret
ically vary, nor, as we have demonstrated is the original 
EH method trustworthy in a quantitative sense. 

The KEH Approximation. By far the most interest
ing and meaningful result obtained by Newton, Boer, 
and Lipscomb5 from their modification of the EH 
method concerns the constancy of the scale factor, K. 
From a number of SCF calculations made with minimal 

(23) Cf. F. O. Ellison and H. Shull, J. Chem. Phys.. 23, 2348 (1955). 
(24) C. A. Coulson and A. H. Neilson, Discussions Faraday Soc, 35, 

71 (1963). 
(25) Note, m is itself the value of the root Xt^1 corresponding to an 

unfilled level here which behaves in accordance with Walsh's rules. 

Slater basis sets for simple molecules they were able to 
demonstrate a remarkable constancy for the K values 
connecting the potential energy parts of the Hamiltonian 
matrix elements for orbitals of given n, 1, m, indepen
dent of the nature of the atoms upon which these 
orbitals are centered. A fair amount of variation in K 
was found for variation among n, 1, m:n', I', m' pairings, 
however. The effects of this K variability on the 
angular dependence of molecular energy may be exam
ined in detail from the relations developed here for this 
method (eq A4-A7).26 

For CH2, a pertinent example, with parametrization 
as suggested in the original references,5 the analytical 
results presented in Table V are obtained. Assuming 

Table V. Expansion Parameters for CH2 in the EH and 
KEH Approximations" 

Method 

EH 
KEH6 

C 

K 

45.44, 
28.35, 

3,p 

52.11 
78.36 

-(A + 
D)Il 

16.4 
18.55 

11 
13 

D 

.4 

.06 
3 
4 
1. 

— V 

.39 

.26 
29, 4, .26 

-k 

21.28, 
18.79, 

0.54 
0.44 

0 All quantities in eV, except for /Ss which are in (eV)2. b With 
Kzo = 0; otherwise parameters as previously given and from ref 5. 
c With X z 0 = 0.4; parameters same as in footnote b, but with v's 
for terms one and two as specified. Coefficient 0.844 on x in 
denominator of term one applies here as well. 

initially for the purpose of comparison with the EH 
results that the zero overlap (2sM, 2pM off-diagonal) term 
is zero (Kzo = 0, eq A6, A7), the coefficients for the 
equivalent of eq 9 are given in Table V next to those 
for the comparable EH calculation. In general, the 
coefficients of the two methods vary by somewhat larger 
factors than the variation in the input diagonal matrix 
elements (A and D), but not always in the same direc
tion. Interestingly, the angle at which the minimum 
energy is obtained is, however, essentially identical; 
i.e., 6 = 60 ± 2°, see Table VI. Moreover, the slopes 

Table VI. Angular Dependence of Total Energy for CH2 in 
the KEH Approximation" 

e 
45 
50 
54.3 
60 
65 
70 
80 
90 

- x 
9.20 
7.60 
6.19 
4.60 
3.29 
2.15 
0.56 
0.0 

- G 

21.79 
20.30 
19,25 
18.13 
17.40 
16.83 
16.00 
15.93 

T 

0.536 
0.534 
0.539 
0.552 
0.567 
0.582 
0.602 
0.615 

- 5 

7.609 
8.712 
9.329 
9.999 

10.274 
10.416 
10.640 
10.496 

• (S + 5) — . 
Kz° = 0 

11.793 
12.507 
12.806 
13.091 
13.060 
12.934 
12.756 
12.484 

Kz0 = 0.4 

10.341 
11.285 
11.787 
12.316 
12.492 
12.553 
12.655 
12.484 

a 6 in degrees, T unitless, all other quantities in eV. 

on the opposite sides of the minima are similar, being 
much sharper on the small- than on the large-f? side, 
despite the different ways the controlling parameters in 
terms one and two vary between the methods; com
pare with Table II. For these results, then, introduc-

(26) Arguments based on apparent cancellation of half the sum of 
kinetic and nuclear attraction energies in the molecule, relative to the 
constituent atoms, with the sum of nuclear repulsion energies,5 suggests 
Etot in this method should vary as '/2 (2 2 «,-) varies with angle. See the 
accompanying paper for further discussion and implications of this 
assumed variation. 
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Table VII. Component Terms of Eq 9 and Changes upon Symmetric Stretching of CH Bonds in CH2 (EH Approximation) 

Term Magnitude, sign Changes as; rate of change; direction 

M2s 

"X 
T(A + D)H 

h 
-G 
X 
/"2p 

T(D) 

Large, + 
Moderate, + 
Moderate, — 

Large, — 
Moderate, + 
Small, -
Large, + 
Small, -
Small, indeterminate 

SVM,ISH/ rapid; smaller 
522po-M,isH/ moderate; smaller 
Complex, Sh S1M,ISH rnost important, re

inforced by opposed by 
"SiSH11IsH2,' moderate to slow; larger 

SVM.ISH/ rapid; smaller 
SiSHi,isH2; slow; smaller 
S2P(TM1ISH.' moderate to slow; smaller 
SV»M,ISH/ moderate; smaller 
See T(A + D)/2 
Rapid change of SVM.isH opposed by 

SVO-M.ISH term; moderate to slow; 
smaller negative then larger positive 

tion of variable K and removal of the kinetic energies 
appears to have little effect upon the physically mean
ingful angle-dependent properties of the CH2 molecule. 

If, however, the zero-overlap term, which is always 
relatively small, is included as the studies in ref 5 indicate 
it should be to reproduce SCF F-matrix form, very 
different results are obtained. Because of the F2sflPl 

dependence of P and Q, and v and w, Ms becomes in
dependent, and the coefficient of x in the denominator, 
unity in the EH approximation and in the KEH ap
proximation where Kzo is zero, becomes smaller than 
one. Zeroth, second, and fourth power cos 8 depen
dence is generated for ^s; if the very small cos4 8 term 
is ignored, the form of eq 9 may be maintained, except 
for the x-coefficient difference mentioned, by absorbing 
the cos2 9 term into the v coefficient; see Table V. 

The effects on the molecular energy of what appear 
to be small changes in the coefficients determining 
h—and compensating changes at that since both the 
numerator and denominator become less sensitive 
functions of x—are nevertheless profound. This is 
revealed in the last column of Table VI; when Kzo 

is 0.4, the predicted minimum shifts to beyond 80° 
(8), which suggests an almost linear equilibrium con
figuration. (Precise numerical results obtained by 
computer solution, in fact, yield only the 90° minimum.) 

A somewhat similar situation is found upon examina
tion of H2O within the KEH framework. With Kzo 

= 0, a minimum is predicted in the region 8 = 50°; 
when Kzo = 0.4, the minimum shifts outward by about 
10° (20° in HOH angle). The explanation of this effect 
is illuminating and important to the entire concept of 
semiempirical predictions of equilibrium bond angles. 
The major effect of the Kzo term may be localized in the 
2ax orbital; the orbital energy is always lower (more 
bonding) where Kzo is zero but by decreasing amounts 
as the angle opens out to 28 = 180°. For the linear 
configuration, symmetry precludes any F2s,2P, contribu
tion. Hence, the energy change for the 2ai orbital, 
and, since it is the orbital most sensitive to the inclusion 
of the zero-overlap term, the total ai orbital energy 
change with 8 must be steeper when Kz0 is zero. The 
effect of including the zero-overlap term (with positive 
coefficient) is then easily seen to shift outward the in
ternal angle at which the decrease in the ai energies 
matches the increase in the b2 energies (unaffected 
by zero-overlap considerations). The effect may like
wise be visualized in terms of increased 2p orbital 
character imposed in the 2ai MO by the inclusion 
of Kz0; higher 2pIM) lsH overlap populations (OP)27 

are noted at all angles with this OP vanishing in the 
linear configuration. 

Energies and Changes upon Symmetric 
Stretching Displacements 

The analytic expressions derived in the Appendix and 
used in dissection of the energy changes accompanying 
angular displacement may also be used for analysis of 
symmetric stretching and compression of the MH 
bonds. For example, eq 9 again separates the effects 
on the lai and 2ax orbitals from those on the Ib2 orbital. 
However, where in the former analysis we had to con
cern ourselves only with changes in cos2 8 and SHH 

with change in 8, now all quantities with the exception 
of v change with change in rMH. Despite the greater 
complexity, useful information on the relative im
portance of contributing effects may be obtained: 
the components of the two terms of eq 9 and how they 
may be expected to change upon MH bond stretching 
are shown in Table VII for the typical case of CH2. 

The first term of eq 9 has a numerator which should 
decrease in magnitude relatively rapidly as the MH 
bond is stretched over theoentire interesting range (for 
CH2 from -0 .2 to +0.5 A about the equilibrium dis
tance 1.094 A with 28 = 103.2°). At the same time, 
the denominator should change much less rapidly due 
to partial cancellation in the changes between T(A + 
D)/2 and ki and also between - G and x- Therefore, 
the whole term is expected to decrease in magnitude 
with stretching or become less bonding, which it does 
as confirmed by computer analysis. Interestingly, from 
these results one finds it is the energy of the Iax orbital 
which by rapid loss of bonding determines the direction 
of change for the term. The 2ai orbital becomes more 
bonding, but considerably more slowly. 

In term two, the two components of the numerator, 
yu2p and vx, both decrease with the same S22Pni,uH de
pendence, but because of the minus sign the rate of 
change is relatively slow. This and the different be
havior of the denominator, due mainly to the difference 
in behavior of k2 compared to ki, makes predictions of 
changes in the whole term an uncertain matter. As 
the exact computer results indicate, the energy of the 
Ib2 level becomes more negative (more binding) as 
the CH bond is stretched over the range 0.894 to near 
the correct equilibrium distance, but thereafter the 
energy increases. 

(27) R. S. Mulliken, J. Chem. Phys., 23, 1833 (1955). 
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Similar but not identical behavior is found for H2O. 
For this molecule, the sum of the ax orbital energies 
increases over the entire interesting range with stretching 
(same displacements as for CH2); except at the most 
distended positions the energies of both the 2ax as well 
as the lai levels increase. Also, the Ib2 level exhibits 
a monotonic increase in energy upon stretching. In 
BeH2 where only the lai and Ib2 levels are filled, the 
energy of the lai level continuously rises; that of the 
Ib2 level falls but more slowly. Consequently, the 
total energy is predicted to increase over the entire 
range 1.143-1.843 A. 

Accepting these results as typical, it is apparent that 
the EH method is completely incapable of reproducing 
the dependence of electronic energy on molecular size. 
Examination of the results forthcoming from the KEH 
method leads to the same conclusion. Where in the 
EH method general monotonic energy increases with 
MH stretching are noted, in the KEH approximation 
monotonic decreases (increased binding) are the general 
result. In the latter method the dependence of the 
electronic energy upon the two-center kinetic energy 
and its changes with change in MH distance are suf
ficiently strong to overcome the dependence upon 
potential energy assumed to be varying as the two-
center overlap integral. Since the kinetic energy inte
grals are evaluated correctly, at least so far as the use of a 
single Slater function representation per orbital allows, 
the initial tendency is to direct the blame for failure 
of the method on the potential energy and the repre
sentation of its variation with geometric change. This 
would be consistent with results obtained for the EH 
method. The reasons for poor approximation of 
molecular sizes (poorer on balance than of shapes) 
appear, however, to be more complex than this single 
factor implies. 

Conclusions 

To the extent the semiempirical methods considered 
can correctly or to good approximation represent the 
contributions of the various electronic interactions 
in a molecule at the correct equilibrium geometry, 
they may be expected to reproduce angular deforma
tions if the most important of these interactions and 
their relative weights vary in the same simple geometric 
way the approximate theories picture them to vary. 
Interactions represented by one- and two-center one-
electron integrals generally do; those represented 
by more complicated integrals reduced successively 
by the Mulliken overlap approximation (i.e., (ij\kk) 
= 1I2SiI(H]kk) + (jj\kk)]f will vary as S y upon 
angular deformation and also therefore will conform 
to the simple picture, at least qualitatively.19 Break
down of the simple methods might then be ex
pected to occur only at the quantitative level, i.e., in 
reproduction of correct equilibrium angles or, at even 
more refined a level, in reproduction of correct bending 
force constants. 

The variation in weighting of these interactions is a 
more difficult problem, being bound up with the SCF 
procedures employed in exact calculations. A certain 
amount of this variation may be absorbed within the 
semiempirical method, provided that it is either mod
erate, compared to integral change, or proportional to 
such change. The results obtained for CH2, where 

relatively minor and slowly varying ionic character is 
predicted for the molecule, and fair judgement of its 
equilibrium angular properties made, may be contrasted 
in this light to the results obtained for H2O. The 
latter is predicted to be strongly ionic (qH ^ V2); indi
cations are that unless provisions for this character are 
properly made, quantitative reproduction of its ge
ometry is out of the question. 

Similar problems of weighting should be recognized 
to exist for both the EH and KEH methods. The sim
pler method has the virtue of identification of the atom 
as it exists in the molecule with free atoms in their 
proper valence states. The improved method removes 
the unrealistic proportionality constraints between 
diagonal and off-diagonal Hamiltonian matrix elements, 
important for the equilibrium configuration, at the cost 
of obfuscation of the physical origins of the diagonal 
elements and, therefore, of their variation under de
mands of the SCF procedure. Additional problems, 
such as interpretation of the contributions of zero-
overlap terms and whether assumption of proportional
ity of orbital energy with total energy is justified, equally 
valid in both methods, are revealed concretely in analy
sis of the KEH method. 

Finally, the factors discussed above which contribute 
to successful reproduction of equilibrium angles in MH2 

and presumably in more complicated systems as well, 
are much less likely to play dominant roles when nearest 
neighbor atom separations are considered. Table 
VIII graphically illustrates one aspect of this difference 

Table VIII. Comparative Charge Effects in CH2 in the EH 
Method under Angular and Stretching Deformations".6 

Angle variation 
at rcH equil 

-RHH 

Variation of rcH 
at equil HCH angle 

45 +0.120 1.56 ± 0.002 0.994 +0.128 
50 0.108 
51.6 0.106 1.715 1.094 0.106 
60 0.109 

1.194 0,085 
70 0.125 

1.294 0.062 
80 0.143 
90 0.150 2.186 ± 0.002 1.394 0.034 
0 8 in degrees; all distances in A and charges compared to neutral 

hydrogen atom. b Where entries appear on the same line they 
represent geometries with equal RBS within the limits shown. 

by reproducing the hydrogen atom charge variation 
in the EH approximation upon stretching as contrasted 
to angle deformation in CH2. Three isoradial (equal 
RHH) situations are shown: in these configurations the 
differences noted may be ascribed entirely to the MH 
interaction differences. Where under angular de
formation the changes in the ionic character of the 
molecule are relatively minor, stretching deformations 
produce a sharp, monotonic, and almost linear decrease 
in the positive charge on hydrogen which must have an 
important effect upon the weighting, or, alternatively, 
the matrix element construction detailed above. 

Appendix 

Analytic Approximation to the Symmetry-Reduced 
Eigenvalue Problem. The symmetric 3 X 3 matrices 
encountered in the EH calculations which include 
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differential overlap may be orthogonalized by straight
forward row and column subtractions. 

0 B-Cx 
D-x E-Fx 

G-Hx 

A — x 0 P 
D-x Q 

R - x 

With the arithmetic mean approximation for off-
diagonal matrix elements and the single subscript 
notation signifying diagonal elements 

A = -f*2sM 

B = V2(KS),SiUlsn(F^ + Flsu)/2 

C = V 2 0 2 s . M , l S H 

D = F2piM 

E = VWp1111188(F8P111 + F1SH)/2 

F = v/2S,
2p;,M;1SH = \/252p^M,is„ cos 6 

G = F1SH + (XS)1SHI,1SH2(F1SH1 + F1SH2)/2 (Al) 
=
 -̂ ISHC' + (KS)lsHJ jlSH2) 

H=I + O1SH1I1SH, 

P = (B - AC)T-' * 

Q = (E - DF)T-1" 

R = (G - 2BC + AC1 

-2EF + DF2)T~l 

T = (H - C2 - F2) 

Recognizing R as positive and large, as it usually is 
in the EH method, and with A and D both negative, the 
transformation x = R — 5 may be made which leads 
to the characteristic equation 

53 + 52(a + d) + h(ad - (P2 + Q2)) -
(P2d +Q2a) = 0 (A2) 

with a = A — R and d = D-R. Since the general 
condition exists that one root, 5, will be small and 
negative consistent with the nature of level interactions, 
i.e., the isolated level of energy R is raised and J5 
« IP2cf + Q2a\, then to a good approximation 

— v ± V c ! — 4uw . . . . 
do = z (A3) 

2M 

where u = a + d, v = ad — (P2 + Q2), and w = 
— (P2d + Q2a). The small value for 5 is obviously 
obtained with the plus root. 

In the KEH approximation 4 X 4 matrices are ob
tained in the totally symmetric combination by inclu
sion of the Is orbital on M. Upon application of the 
same orthogonalization procedure as above and making 
the transformation x = F1SJI — A it is easily shown that 

Yl 
a' 

W2 

T7' 
(A4) 

where V and W are, respectively, (FlslIi2sjI — S1SJI|2S1I X 
Fu»)t_I/2 and \/2(Flsll.iSH - S1SiasHFlsu)t-

1/2 and 
t = 1 — 52

1SMi2sM. The quantities a' and r' are 
similar to a and d (above) except that they bear the Is 
orthogonalization terms and are scaled with respect to 
Fisj,, rather than R. Both are therefore large positive 

numbers, generally greater than V and W by two orders 
of magnitude. Consequently, the root very close to 
F1SM may be removed from the quartic yielding the 
following cubic equation 

S3 + 82(a + d - A) + 8[ad - (P2 + Q2) + 

(a + d)A] - [P2d + Q2a + 

(P2 + Q2)A 
FlSM 

(V2a - W2d)] = 0 (A5) 

The cubic is correct to the first order in the perturbation 
exercised by the Is orbital terms but ignores for the 
moment the zero overlap (ZO) term between the 2s 
and 2p orbitals which is introduced in approximation 
in the KEH method. 

Since FJSM is so large compared to all other terms and 
A so small (e.g., ~0.09 eV for CH2, with a and d gen
erally in the tens-of-volts region), eq A5 is almost iden
tical with A2, and is taken to be so in light of other more 
serious approximations used. The ai energy levels are 
therefore obtained as in eq A1-A3 with appropriate 
modification of the relations connecting the diagonal 
and off-diagonal elements, i.e., proportionality between 
the potential energy terms. 

To correctly reproduce the Hamiltonian matrix in 
the KEH method as regards the orbital interactions for 
which the overlap is zero but the F value is not, the 
empirical relationship 

•fa.a' = K z2SaiSa'iO>i (A6) 

has been suggested.5 This introduces small but often 
nonnegligible 2sM,2pM terms which reduce for the cases 
under consideration to 

Fos,,Pl = L = 2A-20S2 SM,lSH^'2p.rM,ISH1^H 

ZO ,)aH cos 8 (Al) 

and cause the following changes in the terms appearing 
in eq A3. Now, v and w are, respectively, ad — (P2 

+ Q2 + L2) and - ( P 2 d + Q2a - 2PgL). P, Q, and 
P are, in order, (B-AC- LF)T-1 <\ (E-DF-
LC)T-1" and (G - 2BC + AC2 - 2EF + DF2 + 
2LCF)T-K It is usefully recognized that such ZO 
terms will appear only in the totally symmetric matrices 
and have the same angular dependence as the 2p^M, 
1 sH interactions. 

At this juncture it is useful to note that all cases to be 
treated within the EH and KEH methods are not satis
factorily approximated by the analytical procedure 
developed above. For example, BeH2 in the EH 
method is characterized by R values which are of similar 
magnitude and sign as D over much of the interesting 6 
range. In this and like cases the analysis applied to the 
CNDO calculations, which is detailed below, is ap
propriate for the orthogonalized EH and KEH ma
trices. These two principal approximation techniques 
for the cubics fortunately have contiguous ranges of 
applicability with some overlapping. 

The 3 X 3 matrices encountered in the application of 
the CND02 method are simpler than those encountered 
above (since Stj = O for /' =£ j and S11 = 1). With the 
notation carried over from before 

A - x L B 
D - x E 

G-x 
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A, D, and G are, respectively, F2SM, F2pjM,_and (F1SH + 
FiSH11IsH2). L, B, and E are F2SM,2piM, \/2F2sM,1SH, and 
V2F2piMilSH. The F elements are as derived by Pople 
and Segal.6 

Despite the similarity in form to those considered 
above, these matrices are not amenable to the same 
reduction method because of general similarity in size 
of two or more of the diagonal elements. Advantage 
may be taken of this similarity however by introduction 
of the transformation, x = m — y, which produces the 
following characteristic equation. 

yl + y\a + d + g) + 
y(ad + ag + dg - B2 - L2 - E2) + 

2LBE + adg - (B2d + L2g + E2a) = 0 (A8) 

Here a, d, and g are respectively A — m, D — m, and 
G - m. 

If m is defined so as to make the constant term in eq 
A8 zero, the equation yields a root directly (y = 0) and 
consequently reduces to a quadratic which is convenient 
for present purposes. Precise solution for m would of 
course require handling a cubic; however, because of 
the size similarity of two or more of the diagonal 
elements, plus the fact that the off-diagonal elements B 
and E are of comparable magnitude to the diagonal 
elements and L is small, the following very good 
approximation may be made. 

-2LBE + B2D + UG + E2A - adg ^ 
m = L2 + B2 + E2 

-2LBE + B2D + L2G + E2A 
L2 + B2 + E2 (A9) 

That the term adg must be small and can thereby be 
ignored under the conditions outlined may easily be seen 
from the following analysis. A theorem by Cauchy 
(1829)28 states that one root of the 3 X 3 determinant 
encountered here must lie between the roots for the 
cofactor obtained by striking the third column and row 
of the original determinant. The roots of the latter 
are (A + D ± V(A - D)2 + 4Z2)/2. Further, since 
the other roots of the third-order determinant must lie 
one to the high side of the most positive root of the 
quadratic and the other to the low side of the most 
negative, the value of m obtained with the smallest value 
of adg must correspond to the bounded root (x = m).29 

Therefore, for G bounded by A and D, or G slightly 
outside these bounds, as the condition of similarity of 
two diagonal elements implies, it may be shown that 
the maximum permissible value for \adg\ is equal to a 
small fraction (i.e., <7s) of the cube of the difference, 
A-D. Consequently neglect of adg can result in an 
error of only a few per cent in determination of m. As 
an example of the validity of this approximation, the 
roots, x, of the zeroth-order CND02 matrix for CH2 

OCH = 1.094 A, 26 = 108.6°) are -29.80, -15.21, and 
8.61 eV by exact solution of the cubic and —29.76, 
— 15.58, and 8.84 eV employing the approximation for 
m and the first term of the expansion of the quadratic 
in y (see eq A13, below). The approximated value of 

(28) Cf. T. Muir, "The Theory of Determinants in the Historical 
Order of Development," Vol. I, Dover Publications, Inc., New York, 
N. Y., 1960, pp 425-435. 

(29) With small L, and ignoring adg, eq A9 states that m is the 
weighted average (by the squares of the off-diagonal elements) of the 
diagonal elements, A and D. 

mis —15.586 eV compared to the precise value —15.215 
eV: the approximated value of the numerator in eq 
A9 is -5388 (eV)3 while adg is ~ - 1 2 8 (eV)3. The error 
introduced by the approximation in m, ~ 2 % , is 
reflected in the average error of the x values derived. 

Expansion of the Quadratics. Equation A3 (plus 
root) may be expanded by conventional means to yield 

S = 
2(P2 + g2) 

a + d 
X 

( - < > 

4(P2 + Q2) 
+ d)2 + 12(P2 + Q2) 

(AlO) 

where (a - d)2 « 12(P2 + Q2) < (a + d)2, as is 
generally the case. For the KEH method the similar 
expansion, correct to the first explicit order in L 

5 = 2(P2 + Q2) x 

a + d 

1 -
4(P2 + Q2) - 2L(a + d) 

(All) 
(a + c?)2 + 12(P2 + Q2) 

may be derived where the P and Q values are themselves 
modified by terms in L as previously detailed. The 
remaining roots of the original cubics may be most 
expeditiously obtained from the three-component sum 
and product rules (equal respectively to — w and —w) 
which apply to cubics. Combined with eq A3 or 
expansions thereof (eq AlO), expressions of slightly 
poorer quality than for the original root S are obtained 
which lead to the following expansion. 

8 - S -l((a + d)+ 5 0 -

6(F2 + g2) \ 
V(a + d)2+ 12(P2 + Q2)) C } 

The quadratic equation obtained from eq A8 upon 
the setting of m may be conveniently expanded to 
yield 

y = m — x = 

- r ± Vl ( I + r - (ad + ag + dg) 
2X 

(A13) 

where r = (a + d + g)/2, X = L2 + B2 + E2, and 
X » T — (ad + ag + dg). All three roots, the pair in 
eq A13 and y = 0, are obtained together here, in con
trast to the two part decompositions necessary for the 
EH and KEH matrices. 

The quadratics which arise for the b2 symmetry 
orbitals are most conveniently considered under similar 
transformations as were applied for the ai set. The 
EH and KEH equations are identical in form in this 
symmetry and expand to 

- ? ( ' - ( § ) ' - ( I B 

-<<' + KD+KD'-) 
for \2Q\ < \d\ (A14) 

for \2Q\ > \d\ (A15) 

Here, d_= D - R, R = (G r 2EF + DF2)T~\ T = 
(H - F2), and Q = (E - DF)T-v/\ The bar on a 
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previously defined symbol signifies replacement of 
cos B by sin B in the 2po-M,lsH interaction elements and 
change in sign in the S H H factors. Note, in the EH 
method D and D are identical, which is not necessarily 
so in the KEH formulation. 

The energies of the b2 orbitals in the CNDO and 
special EH cases are obtained in expansion as follows. 

I n the preceding paper2 analytic expressions were 
developed for the orbital and total electronic 

energies of the first-row dihydrides within the 
framework of two important variations of the extended 
Huckel method.3'4 The major purpose of the develop
ment was to ascertain how the various specific inter
actions recognized by the theory contribute to the com
puted energies, and how these contributions change with 
changes in molecular geometry. It seems clear from the 
results obtained, and those of other investigators,5 that 
such semiempirical theories should be generally better 
able to approximate the energetics of geometry changes 
from equilibrium configurations involving displace
ments of nonnearest neighbor atoms {i.e., bond angle 
variations) than of neighboring more strongly bound 
atoms. In neither case, however, would confidence in 
the energy surfaces generated by these methods as 
originally formulated seem warranted. 

It appears from some recent studies, though, that 
considerable improvement of these independent electron 
methods is possible if charge redistribution techniques 
which alter the atom-type or standard molecule param
eters are employed. Such fairly uncomplicated pro-

(1) Research performed under the auspices of the U. S. Atomic 
Energy Commission. 

(2) S. Ehrenson, / . Am. Chem. Soc, 91, 3693 (1969). 
(3) R. Hoffmann, J. Chem. Phys., 39, 1397 (1963), and later papers. 
(4) M. D. Newton, F. P. Boer, and W. N. Lipscomb, J. Am. Chem. 

Soc, 88, 2353 (1966), and succeeding papers in the same volume. 
(5) Cf. L. C. Allen and J. D. Russell, / . Chem. Phys., 46, 1029 (1967). 

y = -x = -f ± Vx(i + 1 ^ r 1 ' " ) (A16) 

Now T_ = (d + f)/2 = (D + G)/2, since m = 0 and 
X = E2. The same replacements for bar quantities as 
before are made; for the CNDO applications exchange 
of the bond orders /VM,iSH f"or

 ^VM.ISH are also made. 

cedures specifically as applied to the EH method of 
Hoffmann6 have yielded interesting results and appear 
to be gaining a measure of acceptance in the study of 
geometrical isomerization of large hydrocarbon mole
cules and ions (mainly the angular configuration 
problem).7 Parameter adjustment based on charge 
distributions, which is entirely consistent with the 
philosophy of the original methods, represents a way, 
albeit an averaged way, of imposing self-consistent 
field conditions on the zeroth-order wave functions, 
and stands the chance of successfully approximating 
the results of more complete theories if integral 
variations with geometry change are approximately 
paralleled. Angular effects are certain on these 
grounds to be more favorably treated than bond 
stretches or contractions. 

It is not surprising that the CNDO approximations,8 

which are true SCF methods as applied to wave 
functions obtained from complete but simplified 
Hamiltonians, are also capable, without specific 
modification for the task, of reproducing molecular 
energy variations with bond angle change quite suc
cessfully. Moreover, these methods, originally claimed 
to not as satisfactorily account for energy changes 

(6) D. G, Carroll, A. T. Armstrong, and S. P. McGlynn, ibid., 44, 
1865 (1966). 

(7) Cf. J. E. Baldwin and W. D. Fogelsong, J. Am. Chem. Soc, 90, 
4311 (1968). 

(8) J. A. Pople and G. A. Segal, J. Chem. Phys., 44, 3289 (1966). 
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Abstract: Analysis has been carried out to obtain closed-form energy and electron distribution expressions for the 
first-row atom dihydrides as represented by extended-Hiickel theory modified by self-consistent charge redistribu
tion procedures, and by the similar but theoretically more soundly grounded SCF CND02 method. Previous 
examination of this group of molecules revealed deficiencies in the ability of two important variations of zeroth-
order Huckel theory to represent energy upon geometry dependences. From the results obtained here, the specific 
way in which the charge imbalances established in the zeroth-order results are modified by the variations in electro
negativities of the atoms so charged may be followed. Good approximations to the self-consistent energies and 
charge densities are obtained in both the Huckel and CNDO methods by familiar closed form summation proce
dures. Exactly how the original and the redistribution parameters interact to change the energy upon geometry 
dependence are revealed and the reasons why the Huckel redistribution procedure is inherently inferior to the SCF 
redistribution of the CND02 method are examined. The approximate cancellation of hydrogen-hydrogen electron 
and nuclear repulsions are recognized in the CNDO angle deformation problem and the influence of this cancella
tion on making the CNDO and extended Huckel procedures appear similar is discussed. 

Journal of the American Chemical Society / 91:14 / July 2, 1969 


